9.4 Assess Your Understanding

'Are You Prepared?'

Answers are given at the end of these exercises. If you get a wrong answer, read the pages listed in red.

- 1. The distance d from $P_1 = (3, -4)$ to $P_2 = (-2, 1)$ is $d = \underline{\qquad} (p, 5)$
- 2. To complete the square of $x^2 + 5x$, add _____.(p. 991)
- 3. Find the intercepts of the equation $y^2 = 9 + 4x^2$.
- 4. True or False: The equation $y^2 = 9 + x^2$ is symmetric with respect to the x-axis, the y-axis, and the origin. (pp. 17-19)
- 5. To graph $y = (x 5)^3 4$, shift the graph of $y = x^3$ to the (left/right) ____ unit(s) and then (up/down) ___ unit(s).
- 6. Find the vertical asymptotes, if any, and the horizontal or oblique asymptotes, if any, of $y = \frac{x^2 9}{x^2 4}$. (pp. 189–195)

Concepts and Vocabulary

- 7. A(n) _____ is the collection of points in the plane the difference of whose distances from two fixed points is a constant.
- 8. For a hyperbola, the foci lie on a line called the _____.
- 9. The asymptotes of the hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$ are _____
- 10. *True or False:* The foci of a hyperbola lie on a line called the axis of symmetry.
- 11. True or False: Hyperbolas always have asymptotes.
- **12.** *True or False:* A hyperbola will never intersect its transverse axis.

Skill Building

In Problems 13-16, the graph of a hyperbola is given. Match each graph to its equation.

$$A. \ \frac{x^2}{4} - y^2 = 1$$

B.
$$x^2 - \frac{y^2}{4} = 1$$

$$C. \ \frac{y^2}{4} - x^2 = 1$$

$$D. \ y^2 - \frac{x^2}{4} = 1$$

14.

15

16.

In Problems 17-26, find an equation for the hyperbola described. Graph the equation by hand.

- 17. Center at (0,0); focus at (3,0); vertex at (1,0)
- 19. Center at (0,0); focus at (0,-6); vertex at (0,4)
 - 21. Foci at (-5,0) and (5,0); vertex at (3,0)
- . 23. Vertices at (0, -6) and (0, 6): asymptote the line y = 2x
- 25. Foci at (-4,0) and (4.0); asymptote the line y=-x
- 18. Center at (0,0); focus at (0,5); vertex at (0,3)
- 20. Center at (0,0); focus at (-3,0); vertex at (2,0)
- **22.** Focus at (0, 6); vertices at (0, -2) and (0, 2)
- 24. Vertices at (-4.0) and (4,0); asymptote the line y = 2x
- 26. Foci at (0, -2) and (0, 2): asymptote the line v = -x

In Problems 27–34, find the center, transverse axis, vertices, foci, and asymptotes. Graph each equation (a) by hand and (b) by using a graphing utility.

$$27. \ \frac{x^2}{25} - \frac{y^2}{9} = 1$$

$$28. \ \frac{y^2}{16} - \frac{x^2}{4} = 1$$

$$4x^2 - y^2 = 16$$

$$30. \ 4y^2 - x^2 = 16$$

31.
$$y^2 - 9x^2 = 9$$

32.
$$x^2 - y^2 = 4$$

33.
$$y^2 - x^2 = 25$$

34.
$$2x^2 - y^2 = 4$$

In Problems 35-38, write an equation for each hyperbola.

35.

36.

31

38.

In Problems 39-46, find an equation for the hyperbola described. Graph the equation by hand.

39. Center at (4, -1); focus at (7, -1); vertex at (6, -1)

40. Center at (-3, 1); focus at (-3, 6); vertex at (-3, 4)

41. Center at (-3, -4): focus at (-3, -8); vertex at (-3, -2)

42. Center at (1, 4); focus at (-2, 4); vertex at (0, 4)

43. Foci at (3. 7) and (7. 7): vertex at (6. 7)

44. Focus at (-4, 0) vertices at (-4, 4) and (-4, 2)

45. Vertices at (-1, -1) and (3, -1): asymptote the line $y + 1 = \frac{3}{2}(x - 1)$ 46. Vertices at (1, -3) and (1, 1); asymptote the line $y + 1 = \frac{3}{2}(x - 1)$

In Problems 47-60, find the center, transverse axis, vertices, foci, and asymptotes. Graph each equation (a) by hand and (b) by usin graphing utility.

47.
$$\frac{(x-2)^2}{4} - \frac{(y+3)^2}{9} = 1$$

48.
$$\frac{(y+3)^2}{4} - \frac{(x-2)^2}{9} = 1$$

49.
$$(y-2)^2 - 4(x+2)^2 = 4$$

50.
$$(x + 4)^2 - 9(y - 3)^2 = 9$$

51.
$$(x \div 1)^2 - (y \div 2)^2 = 4$$

52.
$$(y-3)^2 - (x+2)^2 = 4$$

$$x^3 - 53$$
, $x^2 - y^2 - 2x - 2y - 1 = 0$

54.
$$y^2 - x^2 - 4y + 4x - 1 = 0$$

55.
$$y^2 - 4x^2 - 4y - 8x - 4 = 0$$

$$56. \ 2x^2 - y^2 + 4x + 4y - 4 = 0$$

57.
$$4x^2 - y^2 - 24x - 4y + 16 = 0$$

$$58. \ 2y^2 - x^2 \div 2x \div 8y + 3 = 0$$

59.
$$y^2 - 4x^2 - 16x - 2y - 19 = 0$$

$$60. x^2 - 3y^2 + 8x - 6y + 4 = 0$$

In Problems 61-64, graph each function.

[Hint: Notice that each function is half a hyperbola.]

61.
$$f(x) = \sqrt{16 + 4x^2}$$

62.
$$f(x) = -\sqrt{9 + 9x^2}$$

63.
$$f(x) = -\sqrt{-25 + x^2}$$
 64. $f(x) = \sqrt{-1 + x^2}$

64.
$$f(x) = \sqrt{-1 + x^2}$$

Applications and Extensions

Fireworks Display Suppose that two people standing 2 miles apart both see the burst from a fireworks display. After a period of time, the first person standing at point Ahears the burst. One second later, the second person standing at point B hears the burst. If the display is known to occur due north of the person at point A, where did the fireworks display occur?